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EVOLUTION AND INTERACTION OF THREE-DIMENSIONAL VORTEX CLUSTERS 

G. A. Kuz'min UDC 532.517.4 

TURBULENT FLOW MODEL: ENSEMBLE OF SMALL VORTICES 

Hydrodynamic instabilities in turbulent flows lead to the formation of concentrated 
pockets of vorticity (clusters). Their evolution in time is governed by the nonlinear vor- 
ticity dynamics in the interior of the vortices and by their mutual interaction. 

The possibility of analyzing separately the internal and external degrees of freedom 
depends On the intermittency factor • = %/s (% is a characteristic length of the vortices, 
and s is the distance between them). If • § 0, the vortices interact only through their mo- 
menta, and the other degrees of freedom are insignificant [i, 2]. 

If • ~ 0, other multipole moments take part in the interaction of the vortices. In 
turn, their evolution is determined not only by the effect of the surroundings on each spe- 
cific vortex, but also by the nonlinear dynamics of all internal degrees of freedom, the 
set of which is not exhausted by the multipole moments [2, 3]. 

The influence of the vortex surroundings on its internal degrees of freedom for • ~ 1 is 
similar to the influence of a certain nonuniform external velocity field. Consequently, the 
total system of equations for the ensemble of small vortex clusters is partitioned into sub- 
systems. Each subsystem describes a particular vortex in the external field induced by the 
other vortices. The objective of the present study is to derive such a subsystem of equa- 
tions and to analyze its solutions. 

VORTEX CLUSTER IN AN EXTERNAL FIELD IN AN INFINITE COMPRESSIBLE FLUID 

The vorticity field obeys the equation 

a~/at - -  v A ~  = (mV)U - -  ( u v ) ~ .  ( 1 )  

Galerkin's method is used for the approximate solution of Eq. (i). The choice of basis for 
the expansion is based on the following considerations. 

Vortex clusters in turbulent flows comprise certain irregular diffuse formations. If 
the Reynolds number Re determined from the cluster parameters is small, the evolution of a 
vortex depends mainly on the viscosity. Consequently, a natural basis for the expansion is 
the set of solutions of the linearized equation (I). 

Turbulent fluctuations having a broad spectrum of space scales develop inside the vor- 
tices for large Re. The detailed description of these fluctuations would require the inclusion 
of a large number of terms in the expansion, regardless of the system of functions chosen as 
the basis. Large-scale vortex deformations, which influence the interaction between the 
vortices, are the most important in regard to the present study. Small-scale fluctuations 
act as a reservoir, from which energy is drained. Their influence can be taken into account 
by means of an effective viscosity coefficient Vef" The number Reef formulated using the 
effective viscostiy is no longer as large as Re, and the solution of the linearized equation 
(I) with v replaced by ~ef can be adopted as the basis of the expansion. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
2, pp. 44-48, March-April, 1991. Original article submitted March 9, 1989; revision submitted 

October 2, 1989. 

184 0021-8944/91/3202-0184512.50 �9 1991 Plenum Publishing Corporation 



The multiple moments of the vortices and such important physical characteristics as the 
vortex momentum and angular momentum are related to the coefficients of the expansion with 
respect to the basis by simple equations. This fact offers an additional argument in favor 
of the selected basis system of functions. 

Certain particular solutions of the linearized equation (i) (in a special coordinate 
system) have been investigated previously [4]. These solutions are expressed in terms of 
orthogonal Hermite polynomials. The general solution of the linearized equations (I) are 
expressed in covariant form in terms of tensor Hermite polynomials, which are given by the 
equations [5] 

The polynomials (2) satisfy the orthogonality relations 

- ~:) " " ( 3 )  7 l "  " - J n  

x m  Z "~ J :"" ,~ :r..:m 

where A hS"''j~...~n i s  the sum of a l l  poss ib l e  products  of Kranecker de l t a  symbols of the form 

The general solution of Eq. (i) is sought in the form of an expansion 

~ P  - ~  ~ ~ : (~1  (r + r, t) y_, 7_ a3/2~3 n = l  --~CTl"'in ( ~ '  " I (4)  

[~ denotes the coordinates of the center of the vortex, and X(t) is its scale]. The ortho- 
gonality relations (3) can be used to express the tensors c in terms of the vorticity mo- 
ments : 

- -  2 " n !  o h  (g + r, t) n ( ' )  r - - -  - ~ ~  7 d V .  ( 5 )  

The c o n d i t i o n  d i v ~  = 0 g i v e s  
i i I i n 

c i r . .~  + ci,h...i ~ + . , .  + cir_.~_l.~ = O. ( 6 )  

The approximation used in the present study stipulates that o n l y  a certain finite number 
of terms N is included explicitly in the sum (4). If there is strong small-scale motion de- 
scribed by terms of the sum (4) with n > N, it is taken into account implicitly through the 
effective viscosity coefficient. The effective viscosity is estimated by comparison with 
experiment. This technique is known in the literature on computational fluid dynamics as 
modeling of the motions of partial grid scales. 

We substitute the expansion (4) in Eq. (I) and project the basis onto the first N terms. 
We then solve the resulting system of ordinary differential equations. The vortex cluster 
is analyzed in an accompanying frame, in which ~ = 0. For N = 3 the system of equations for 
the moments has the form 

dp.~ a ~ ~nuj [ . 

) eom at -- 2 -3 5ab)J ; ( 8 )  

)( ) e~,~ . ~ / j + _ . $  ~_jT_2v p~ihz_Xp,~5~ z t f = ~ Bkz ~ B ~ , k 6 i l - - ~ B ~ 6 i n  , (9 )  

where  U i s  t h e  e x t e r n a l  v e l o c i t y  f i e l d ,  P i  = ei jmC~ i s  t h e  v o r t e x  momentum, and b i k  and B ~  
a r e  q u a d r a t i c  fo rms  in  t h e  moments:  

3 l (~2 Oa+iUj 
b~ = eijt ~ c{ r,.i~ [ 2 

q_ On-lUj \ 
+ 

1 8 5  



~ t t,-* m m m m m m " ~ h 
+ (2n)3/2---!--i - -  t5~3 c'~e'~ + ~.~koc~ c,;va + 6chcvv~ + t2cve~h + 2Iciness,, + 

+ / ' . lCmCw,  m -- qC~hCvv -- r -- 7cmtevv 
ra ra ~ k A m m m m i h )] I (2CivvCh~ + 9CmtmCvwn + ]CihvC~v + 4ci~tvcl~tv + 6ct~voc~tvo , 7~ ~ J 

~ /  o'v. o~u . o % 8 , ]  

( ~2 05U ~ oau ~ OSU ~ 
+ C ~t% a 

,t 

26 OU:i~] = ~ 2 ( ~ [ z g / , ~ z i  mi  . 5 . ~  m 

+ 72cmc~ + t80 ,~ ~ m ~ - -  t-c'~c~z --  8t (c~vch~ + cwct~,) + 

+ ,'~&ae,vmCvhl - -  1/4 ~.Ci,~,C%,hl 2C 9 0  (CkrnC~.r --~ ClmC,v,~m . 

The sy s t e m ( 7 ) - ( 9 )  c o n s i s t s  o f  39 s c a l a r  e q u a t i o n s .  By v i r t u e  o f  Eq. (6 )  and t h e  sym- 
m e t r y  conditions, only 26 of the equations are independent. The properties of the solutions 
of the system of equations are conveniently illustrated in a simple special example, in which 
the number of independent equations is rendered small by additional symmetry properties of 
the vortex. 

SYMMETRIC VORTEX OSCILLATIONS 

Let us assume that the vortex lines are invariant under reflections in the xz and yz 
planes: 

~ ( x ,  y, z) = ~ ( - x ,  y, z) = - ~ ( x ,  - ~ ,  z), 

~u(x, y, z) = - ~ ( - x ,  y, z) = o y ~ ,  - y ,  z), ( 1 0 )  

~z(x, y, z ) = - - ~ z ( - - x ,  y, z) = -  ~z(x, - y ,  z). 

Using Eqs.  ( 5 ) ,  ( 6 ) ,  and ( 1 0 ) ,  we e x p r e s s  t h e  n o n z e r o  components  o f  t h e  t e n s o r  moments in  
t e rms  o f  s i x  i n d e p e n d e n t  f u n c t i o n s  E, c ,  k,  d, s f :  

x ~j z x ~ 
c ~ = ~ ,  c~z=c ,  c ~ = - - z - - c ,  c ; ; v = - - k ,  % = = - - I ,  c ~ v y = - - 3 d ,  (11 )  

3k, ' ~ = ( l - - / ) / 2 .  Cxxx  ~ Cxyy  = d ,  C~z z ~ / ,  Cxy z 

I f  c o n d i t i o n s  (10)  h o l d ,  t h e  v o r t e x  moment p i s  d i r e c t e d  a l o n g  t h e  z a x i s ,  and t h e  v o r t e x  
a n g u l a r  momentum i s  e q u a l  t o  z e r o .  

To c l o s e  t h e  s y s t e m  of  e q u a t i o n s ,  i t  i s  n e c e s s a r y  t o  r e l a t e  t h e  v o r t e x  p o s i t i o n  and s c a l e  
t o  t h e  moments of  t h e  v o r t i c i t y  d i s t r i b u t i o n .  We u s e  t h e  d e f i n i t i o n s  f o r  ~ [6]  and ~: 

~z=Zp  [r X ol~zdV; (12)  

I y (12)' ~ = ~  [rX~]~( x2+y~)dV- 

If the origin is placed at the center of vorticity, 5 = 0. Relation (12)' is equivalent to 
k + d = 0. If the functions (Ii) and (12) are known, the vorticity field is reconstructed 
according to Eq. (4). 

The significance of the parameters (ii) is determined by the form of the kernels in Eq. 
(5). The parameter Z + f gives the vortex length in the longitudinal direction. If k - d 
0, the vortex is flattened either in the x-direction or in the y-direction, depending on the 
sign of k - d. For s - f ~ 0 the vortex resembles either an ellipse or a butterfly in the 
intersection with the xz and yz planes. If, in addition, c # 0, then the ellipse curves into a 
banana figure. All these configurations supersede one another in a definite sequence in 
unsteady vortices. 
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STEADY-STATE SOLUTIONS 

In an inviscid fluid we have an analytical steady-state solution, in which all the vortex 
lines are rings: k = d = c = e = 0, Z = const, f = const, X = 10. The vortex velocity is 
determined by its momentum, radius, and longitudinal scale. 

A vortex similar to a spherical Hill vortex is obtained if Eqs. (ii) and (12) are set 
equal to the corresponding moments of the Hill vortex [i]. The direct computation of the 
integrals gives ~ = c = k = d = Z = f = 0, X2 = (2/7)a 2 (a is the radius of the Hill vortex). 
The vortex moves with a velocity 7S/2p/[15(4~)3/=a3], which is 20% higher than the velocity 
of the Hill vortex. 

Other steady-state solutions similar to curved vortex rings are readily obtained. We 
shall not write out these solutions, because it is not clear which of them are preserved in 
the limit of the infinitely precise approximation. The steady-state solutions can include 
configurations, which are like vortons of two-dimensional hydrodynamics [7] in that they 
move through space without changing their shape. 

VORTEX OSCILLATIONS 

The nature of the evolution of a vortex in a viscous fluid depends on the value of R = 
p/X~. The initial deformations decay monotonically for R < -10 3 . 

Figures 1-4 show that the equations have oscillating solutions for sufficiently large R. 
Curves 1-6 correspond to the dimensionless functions 

z~ == (~/~o - -  1)/~, z~ = c/(~p), ~ = - t 2 k / ( ~ p ) ,  

z4 = 3(l + ] ) / ( 2 k ~ ) ,  % :-: 3 ( / - - / ) / ( 2 ~ ) ,  % = - - U ~ 3 @  

(U is the self-induced vortex velocity). The external velocity is assumed to be equal to 
zero. The dimensionless time T = tp/X~ is plotted along the horizontal axis. In Figs. i-3 
R = 2500. 

If a small quadrupole moment z z is given at the initial time, curves I-6 are close to 
the analytic solution, expressed in terms of Bessel functions, of the linearized (with re- 
spect to the deformation amplitude) system of equations (see Fig. 1). In an inviscid fluid 
z2, z3, and z s are sinusoidal, and zl, z~, and zs are constant. 

Figure 2 shows the numerical solution of the equations when the vortex lines are ellip- 
tical at the initial time [z3(0) is small, but not equal to zero]. The entire oscillation 
patern is shifted along the vertical axis. In this regard, diffuse vortices behave differ- 
ently from thin vortex rings, for which the oscillations do not shift along the vertical 
axis [8]. 
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Figure 3 illustrates the influence of nonlinearity on the period and waveform of the 
oscillations. As the amplitude increases, the period of the oscillations increases. The 
peaks of the function z 2 begin to resemble sawteeth. The peaks of the functions z 3 and Zs, 
on the other hand, are rounded near the top. 

Figure 4 shows the damped oscillations of a turbulent ring. The influence of small- 
scale turbulence is taken into account through the turbulent viscosity coefficient, which is 
presumed equal to bp/% 2 on the basis of dimensional considerations. A comparison of the cal- 
culated values of the rate of growth of the vortex scale and translational velocity with the 
experimental data [9, i0] enables us to estimate the empirical constant b. In Fig. 4 we 
have b = 4.10 -4 and R = i0 ~. Consequently, the Reynolds number determined from the turbulent 
viscosity is quite large, so that the deformations of the turbulent vortex are damped in an 
oscillatory regime. 

INTERACTING VORTICES 

The system of equations for an ensemble of vortices consists of subsystems. Each sub- 
system has the form (7)-(9) and describes the evolution of the parameters and coordinates 
of one of the vortices. Interaction takes place through the nouniform velocity induced by 
the vortex system at the site of the given vortex. This velocity is given by a multiple 
expansion, in which higher than third-order terms are discarded. Roberts' equations [2] are 
obtained from Eqs. (7)-(9)when the viscosity and the intermittency parameter tend to zero. 
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